

ADVANCED SUBSIDIARY GCE MATHEMATICS

Core Mathematics 1

4721

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required: None Wednesday 20 May 2009 Afternoon

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- This document consists of 4 pages. Any blank pages are indicated.

1 Given that
$$y = x^5 + \frac{1}{x^2}$$
, find
(i) $\frac{dy}{dx}$, [3]

(ii)
$$\frac{d^2 y}{dx^2}$$
. [2]

2 Express
$$\frac{8+\sqrt{7}}{2+\sqrt{7}}$$
 in the form $a + b\sqrt{7}$, where a and b are integers. [4]

3 Express each of the following in the form 3^n :

(i)
$$\frac{1}{9}$$
, [1]

(ii)
$$\sqrt[3]{3}$$
, [1]

(iii)
$$3^{10} \times 9^{15}$$
. [2]

4 Solve the simultaneous equations

$$4x^2 + y^2 = 10, \qquad 2x - y = 4.$$
 [6]

- 5 (i) Expand and simplify (2x+1)(x-3)(x+4). [3]
 - (ii) Find the coefficient of x^4 in the expansion of

$$x(x^{2}+2x+3)(x^{2}+7x-2).$$
 [2]

6 (i) Sketch the curve $y = -\sqrt{x}$. [2]

(ii) Describe fully a transformation that transforms the curve $y = -\sqrt{x}$ to the curve $y = 5 - \sqrt{x}$. [2]

(iii) The curve $y = -\sqrt{x}$ is stretched by a scale factor of 2 parallel to the *x*-axis. State the equation of the curve after it has been stretched. [2]

7 (i) Express
$$x^2 - 5x + \frac{1}{4}$$
 in the form $(x - a)^2 - b$. [3]

- (ii) Find the centre and radius of the circle with equation $x^2 + y^2 5x + \frac{1}{4} = 0.$ [3]
- 8 Solve the inequalities

(i)
$$-35 < 6x + 7 < 1$$
, [3]

(ii)
$$3x^2 > 48$$
. [3]

9 A is the point (4, -3) and B is the point (-1, 9).

(i) Calculate the length of <i>AB</i> .	[2]

- (ii) Find the coordinates of the mid-point of *AB*. [2]
- (iii) Find the equation of the line through (1, 3) which is parallel to *AB*, giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers. [4]
- 10 (i) Solve the equation $9x^2 + 18x 7 = 0.$ [3]
 - (ii) Find the coordinates of the stationary point on the curve $y = 9x^2 + 18x 7$. [4]
 - (iii) Sketch the curve $y = 9x^2 + 18x 7$, giving the coordinates of all intercepts with the axes. [3]
 - (iv) For what values of x does $9x^2 + 18x 7$ increase as x increases? [1]
- 11 The point *P* on the curve $y = k\sqrt{x}$ has *x*-coordinate 4. The normal to the curve at *P* is parallel to the line 2x + 3y = 0.
 - (i) Find the value of k. [6]
 - (ii) This normal meets the x-axis at the point Q. Calculate the area of the triangle OPQ, where O is the point (0, 0). [5]

4721 Core Mathematics 1

1	(i)	$\frac{\mathrm{d}y}{\mathrm{d}y} = 5r^4 - 2r^{-3}$	B1	$5x^4$
		$dx = \frac{dx}{dx}$	M1	x^{-2} before differentiation or kx^{-3} in $\frac{dy}{dr}$ soi
			A1 3	$-2x^{-3}$
	(ii)	d^2 v	M1	Attempt to differentiate their (i) – at least
		$\frac{d^{2}y}{dx^{2}} = 20x^{3} + 6x^{-4}$	A1 2 5	one term correct cao
2		$\frac{(8+\sqrt{7})(2-\sqrt{7})}{(2+\sqrt{7})(2-\sqrt{7})}$	M1	Multiply numerator and denominator by conjugate
		$=\frac{9-6\sqrt{7}}{4-7}$	A1 A1	Numerator correct and simplified Denominator correct and simplified
		$=-3+2\sqrt{7}$	A1 4 4	cao
3	(i)	3 ⁻²	B1 1	
	(ii)	$3^{\frac{1}{3}}$	B1 1	
	(iii)	$3^{10} \times 3^{30}$	M1	3^{30} or 9^{20} soi
		$=3^{40}$	A1 2 4	
4		y = 2x - 4		
		$4x^{2} + (2x - 4)^{2} = 10$ $8x^{2} - 16x + 16 = 10$	M1*	Attempt to get an equation in 1 variable only
		$8x^{2} - 16x + 6 = 0$	A1	Obtain correct 3 term quadratic (aef)
		$4x^2 - 8x + 3 = 0$		
		(2x-1)(2x-3) = 0	M1dep*	Correct method to solve quadratic of form $ax^2 + bx + c = 0$ ($b \neq 0$) Correct factorisation oe
		$x = \frac{1}{2}$, $x = \frac{3}{2}$	A1	Both x values correct
		y = -3, y = -1	A1 A1 6	Both y values correct
			6	or one correct pair of values www B1 second correct pair of values B1

4721

5	(i)	(2x2 - 5x - 3)(x + 4) = 2x ³ + 8x ² - 5x ² - 20x - 3x - 12	M1		Attempt to multiply a quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^3 term)
		$= 2x^3 + 3x^2 - 23x - 12$	A1		Expansion with no more than one incorrect term
			A1	3	
	(ii)	$2x^4 + 7x^4$	B 1		$2x^4$ or $7x^4$ soi www
		$=9x^{4}$	B 1	2	$9x^4$ or 9
				5	
6	(i)		B1		One to one graph <u>only</u> in bottom right hand
			B1	2	Correct graph, passing through origin
	(ii)	Translation Parallel to <i>y</i> -axis, 5 units	B1 B1	2	
	(iii)	$y = -\sqrt{\frac{x}{2}}$	M1		$\sqrt{2x}$ or $\sqrt{\frac{x}{2}}$ seen
			A1	2 6	cao
7	(i)	$\left(x-\frac{5}{2}\right)^2 - \left(\frac{5}{2}\right)^2 + \frac{1}{4}$	B1		$a = \frac{5}{2}$
		$=\left(x-\frac{5}{2}\right)^2-6$	M1		$\frac{1}{4}-a^2$
	(ii)	$\left(x-\frac{5}{2}\right)^2 - 6 + y^2 = 0$	A1	3	cao
		$\begin{pmatrix} 2 \\ 2 \\ \end{pmatrix}$ Centre $\begin{pmatrix} 5 \\ 2 \\ 0 \end{pmatrix}$	B1 B1		Correct x coordinate Correct y coordinate
		Radius = $\sqrt{6}$	B 1	3 6	
			1		

8 (i)	-42 < 6x < -6	M1	2 equations or inequalities both dealing with all 3 terms 7 and 1 seen on
	$-7 < \chi > -1$	Al 3	-7 < x < -1 (or $x > -7$ and $x < -1$)
(ii)	$x^2 > 16$	B1	± 4 oe seen
	x > 4 or $x < -4$	B1 3	x > 4 x < -4 not wrapped, not 'and'
0 (1)		O	
9 (1)	$\sqrt{(-1-4)^2+(93)^2}$	M1	Correct method to find line length using Pythagoras' theorem
	=13	A1 2	cao
(ii)	$\left(\frac{4+1}{2}, \frac{3+9}{2}\right)$	M1	Correct method to find midpoint
	$\left(\frac{3}{2},3\right)$	A1 2	
(iii)	Gradient of $AB = -\frac{12}{5}$	B1	
	$y = 3 = -\frac{12}{(r-1)}$	M1	Correct equation for line any gradient
	y = 5 = 5 12r + 5v - 27 = 0	A1	through (1, 3) Correct equation in any form with gradient
	12x + 5y - 21 = 0	A1 4	simplified 12r + 5v - 27 = 0
		8	12.4 (5.9 2) 0
10 (i)	(3x+7)(3x-1) = 0	M1 A1	Correct method to find roots Correct factorisation oe
	$x = -\frac{7}{3}, x = \frac{1}{3}$	A1 3	Correct roots
(ii)	$\frac{dy}{dt} = 18x + 18$	M1	Attempt to differentiate <i>y</i>
	$\frac{\mathrm{d}x}{18x+18} = 0$	IVI I	Uses $\frac{dy}{dx} = 0$
	x = -1 $y = -16$	A1 A1 ft 4	
(iii)	1 ³ 1 1	B1 B1	Positive quadratic curve $(0, 7)$
	\setminus /	B1 3	Good graph, with correct roots indicated and
	-73 /3 24		minimum point in correct quadrant
	-7+		
(iv)	x > -1	B1 1 11	

11 (i)	Gradient of normal = $-\frac{2}{3}$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} k x^{-\frac{1}{2}}$	M1* A1	Attempt to differentiate equation of curve $\frac{1}{2}kx^{-\frac{1}{2}}$
	When $x = 4$, $\frac{dy}{dx} = \frac{k}{4}$ $\therefore \frac{k}{4} = \frac{3}{2}$ k = 6	M1dep* M1dep* A1 6	Attempt to substitute $x = 4$ into their $\frac{dy}{dx}$ soi Equate their gradient expression to negative reciprocal of their gradient of normal cao
(ii)	P is point (4, 12) Q is point (22, 0) Area of triangle = $\frac{1}{2} \times 12 \times 22$ = 132 sq. units	B1 ft M1 A1 M1 A1 5 11	Correct method to find coordinates of Q Correct x coordinate Must use y coordinate of P and x coordinate of Q